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ABSTRACT

Motivation: Predicting how proteins interact at the molecular level
is a computationally intensive task. Many protein docking algorithms
begin by using fast Fourier transform (FFT) correlation techniques to
find putative rigid body docking orientations. Most such approaches
use 3D Cartesian grids and are therefore limited to computing three
dimensional (3D) translational correlations. However, translational
FFTs can speed up the calculation in only three of the six rigid
body degrees of freedom, and they cannot easily incorporate prior
knowledge about a complex to focus and hence further accelerate
the calculation. Furthemore, several groups have developed multi-
term interaction potentials and others use multi-copy approaches to
simulate protein flexibility, which both add to the computational cost
of FFT-based docking algorithms. Hence there is a need to develop
more powerful and more versatile FFT docking techniques.
Results: This article presents a closed-form 6D spherical polar
Fourier correlation expression from which arbitrary multi-dimensional
multi-property multi-resolution FFT correlations may be generated.
The approach is demonstrated by calculating 1D, 3D and 5D
rotational correlations of 3D shape and electrostatic expansions
up to polynomial order L = 30 on a 2 GB personal computer. As
expected, 3D correlations are found to be considerably faster than
1D correlations but, surprisingly, 5D correlations are often slower
than 3D correlations. Nonetheless, we show that 5D correlations
will be advantageous when calculating multi-term knowledge-based
interaction potentials. When docking the 84 complexes of the Protein
Docking Benchmark, blind 3D shape plus electrostatic correlations
take around 30 minutes on a contemporary personal computer and
find acceptable solutions within the top 20 in 16 cases. Applying a
simple angular constraint to focus the calculation around the receptor
binding site produces acceptable solutions within the top 20 in 28
cases. Further constraining the search to the ligand binding site gives
up to 48 solutions within the top 20, with calculation times of just a
few minutes per complex. Hence the approach described provides
a practical and fast tool for rigid body protein-protein docking,
especially when prior knowledge about one or both binding sites
is available.
Availability: http://www.csd.abdn.ac.uk/hex/
Contact: d.w.ritchie@abdn.ac.uk
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1 INTRODUCTION
Genome-wide proteomics studies (Gavin et al., 2002; Ho et al.,
2002; Ito et al., 2001; Uetz et al., 2000) provide a growing
list of putative protein–protein interactions, but understanding the
function of these predicted interactions requires further biochemical
and structural analysis. However, protein–protein hetero-complexes
currently constitute <2% of the known protein structures in the
Protein Data Bank (PDB; Berman et al. 2002). Protein docking
algorithms aim to bridge this gap by using computational techniques
to predict the three dimensional (3D) structures of protein–protein
complexes starting from the unbound or model-built monomers. For
recent reviews, see Ritchie (2008) and references therein.

Proteins have intrinsically dynamical molecular structures which
can often change conformation to some extent on complexation.
However, in order to make the calculation tractable, most protein
docking algorithms begin by assuming that the structures to be
docked are rigid. This essentially reduces the problem to a 6D
rotational–translational search space. The fast Fourier transform
(FFT) correlation approach, introduced by Katchalski-Katzir et al.
(1992), revolutionized this part of the docking calculation by making
it computationally feasible to systematically explore and evaluate
in the order of billions (O(109)) of trial orientations without using
any a priori information on the expected structure. The first FFT
scoring function of Katchalski-Katzir et al. was based only on shape
complementarity within a Cartesian grid, but was later extended
to include additional terms representing electrostatic interactions
(Gabb et al., 1997; Mandell et al., 2001), or both electrostatic and
desolvation contributions (Chen et al., 2003). Each of these terms
adds a new correlation function to the potential. More recently,
we have shown that the use of pairwise structure-based potentials
can improve the generation of near-native docking predictions
by up to 50% (Kozakov et al., 2006). Other investigators have
also reported considerable success with knowledge-based docking
potentials (Ritchie, 2008). To be used with FFT-based docking, all
such potentials need to be expressed as sums of correlation functions.
Furthermore, in order to simulate protein flexibility during docking
calculations, several groups use FFT techniques to dock ensembles
of rigid body structures (Grünberg et al., 2004; Mustard and Ritchie,
2005; Smith et al., 2005), which further increases the computational
cost of FFT-based approaches. Hence there is a need to develop more
powerful and more versatile FFT docking techniques.

Several groups have demonstrated considerable success with
‘data-driven’ docking techniques, perhaps best exemplified by
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the HADDOCK program (Dominguez et al., 2003), which use
external biochemical or biophysical knowledge about binding sites
or interaction residues to filter rigid body docking predictions.
However, due to the translational nature of the Cartesian FFT, which
cannot be easily constrained to search around a putative binding site,
data-driven filters generally cannot be used to focus and accelerate
conventional Cartesian FFT-based approaches.

The other disadvantage of Cartesian FFT-based approaches is that
new FFT grids must be computed for each rotational increment
of the rotating molecule. Because fully covering the search space
requires many thousands of rotational samples, Cartesian docking
algorithms commonly take several hours to complete, and the
efficiency of the approach decreases with increasing complexity of
the potential. On the other hand, the Hex spherical polar Fourier
(SPF) representation (Ritchie and Kemp, 2000) avoids the grid
sampling overhead of the Cartesian-based methods and naturally
allows up to two angular constraints to be used to constrain the
search space. Hence Hex docking runs typically take from a few
minutes to around 1 h, even though the original algorithm uses only
a 1D FFT to accelerate the calculation. However, the efficiency of the
Hex algorithm also decreases with the increasing complexity of the
potential.

Because the FFT allows a problem that formally requires O(N2)
operations to be computed in O(N logN) steps, greater computational
speed-ups should be expected when the FFT is applied to as many
degrees of freedom as possible. A 5D FFT rotational correlation
technique was described by Kovacs et al. (2003) to superpose 3D
electron microscopy (EM) density maps. However, conventional
FFT-based techniques require that each FFT grid dimension be
a power of two. Hence the approach described was limited to
relatively crude low order correlations for the 5D FFT grid to
fit into computer memory. Recently, multi-dimensional mixed
radix FFT implementations have become available (e.g. MKL:
http://www.intel.com/, FFTW: http://www.fftw.org/ and Kiss FFT:
http://sourceforge.net/projects/kissfft/), thereby eliminating the
radix constraint on the FFT grid dimensions. Nonetheless, no 5D
FFT protein–protein docking algorithm has been described to date,
and it would appear that implementing a practical 5D EM density
correlation also remains a challenge. For example, Garzón et al.
(2007) found it necessary to remove two FFT dimensions from the
5D rotational space in order to implement a practical 3D EM density
fitting algorithm.

This article shows that by representing the properties to be
correlated as expansions of SPF basis functions, it is relatively
straight-forward to develop an analytic 6D correlation master
equation in which each pairwise interaction is concisely represented
as a fully factorized sum over a product of complex exponentials and
SPF translation matrix elements. This master equation may then be
used to derive generating functions (GFs) for 5D, 3D and 1D FFT
rotational correlations. Surprisingly, 5D shape-only and low order
shape plus electrostatic correlations are found to be slower than
3D correlations. However, due to the fully factorized form of the
GF, 5D FFTs are expected to be advantageous when correlating
more complex multi-term potentials. Nonetheless, regardless of the
dimension of the FFT correlation, the SPF approach provides a
natural way to define one or two simple angular constraints with
which to focus docking searches around known or hypothesized
binding sites. This accelerates the calculation and can significantly
reduce the number of false-positive predictions.

Here, the approach is applied to the 84 complexes of the Protein
docking benchmark (Mintseris et al., 2005) using shape-only and
shape plus electrostatic correlations. Blind 3D shape-only docking
correlations find acceptable solutions within the top 20 in 6 cases,
whereas including electrostatics in the calculation gives 16 solutions
within the top 20. Applying a single loose angular constraint to focus
the calculation around the receptor binding site is sufficient to
produce acceptable solutions within the top 20 in 28 cases. Further
constraining the search to the ligand binding site in a similar manner
gives up to 48 solutions within the top 20.

2 METHODS

2.1 SPF correlations
The main goal of Fourier-based docking algorithms is to calculate rapidly
and accurately multiple overlap integrals of the form

E =
∫

φ(r)ρ(r)dr (1)

where dr =r2dr sinθ dθdφ is the 3D volume element in polar coordinates,
φ(r) and ρ(r) represent 3D scalar functions such as the electrostatic potential
and charge density, and E represents the classical electrostatic energy of the
system, for example. Protein shape complementarity may also be expressed
as sums of overlap integrals Ritchie and Kemp (2000). In the SPF approach,
each real scalar property of interest, A(r), is represented as a polynomial
expansion to order N as

A(r)=
N∑

nlm

anlmRnl(r)ylm(θ,φ), |m|≤ l<n≤N, (2)

where anlm are real expansion coefficients, calculated just once for each
property by numerical integration, ylm(θ,φ) are normalized real spherical
harmonics (SHs) and Rnl(r) are orthonormal Gaussian-type orbital (GTO) or
exponential-type orbital (ETO) radial basis functions (Ritchie and Kemp,
2000). Calculating the expansion coefficients corresponds to performing
a forward Fourier transform in conventional FFT-based approaches. The cost
of this step scales linearly with the number of atoms or the volume of the
protein. All subsequent calculations depend only on the expansion order. For
consistency with previous work (Ritchie, 2005; Ritchie and Kemp, 2000),
the radial index, n, counts from unity. Hence the highest harmonic order
and highest polynomial power in any individual coordinate is L = N −1.
Until now, Hex docking runs typically used 1D real correlations of a two-
term (van der Waals plus surface skin) shape density representation of each
protein using L = 24 (N = 25) GTO expansions. Electrostatic interactions
may be calculated similarly using the ETO basis functions. Figure 1 shows
some example SPF representations of the complex between the HyHel-5
antibody and hen egg lysozyme (PDB code 3HFL), calculated from the GTO
expansion coefficients at various orders.

Here, it is convenient to use both real and complex SHs, with the
complex functions denoted as Ylm(θ,φ). The two types of function are related
by a unitary transformation matrix, U(l), which mixes pairs of functions with
the same absolute value of the circular frequency, m, Biedenharn and Louck
(1981):

ylm(θ,φ)=
∑
m′

U(l)
mm′ Ylm′ (θ,φ). (3)

Hence, Equation 2 may be written in complex form as

A(r)=
N∑

nlm

AnlmRnl(r)Ylm(θ,φ) (4)

where the complex coefficients, Anlm, are related to the real expansion
coefficients by

Anlm =
∑
m′

U(l)
m′manlm′ . (5)
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Fig. 1. SPF steric density isosurfaces of various 3D GTO expansions for
the complex between the HyHel-5 antibody Fv domain (left) and hen egg
lysozyme (right). The subunits are separated by 15 Å for clarity. The bottom
right pair shows atomic Gaussian representations of the van der Waals
surfaces from which the SPF expansions are derived.

SH expansions are useful in rotational problems because each group of SHs
with the same order l transform amongst themselves under rotation according
to the Wigner D(l) matrices (Biedenharn and Louck, 1981):

R̂(α,β,γ )Ylm(θ,φ)=
∑
m′

D(l)
m′m(α,β,γ )Ylm′ (θ,φ), (6)

where R̂(α,β,γ ) represents a rotation operator expressed in terms of the
Euler rotation angles α,β and γ about the z, y and z axes, respectively,
with the γ rotation being applied first. Equation (6) essentially says that
a rotated SH function can always be expressed as a linear combination of
unrotated SH functions. Consequently, once the SPF expansion coefficients
have been calculated, the effect of rotating a protein may be simulated
by transforming only the original coefficients. Because the SPF basis
functions are orthonormal, the overlap between a pair of SPF expansions
may be calculated as the scalar product of the expansion coefficients using,
for example,

E =
N∑

nlm

aφ

nlm ·aρ

nlm =Re(
N∑

nlm

Aφ

nlm ·Aρ

nlm)≡Re(A·B). (7)

In a rigid body docking search, the overall aim is to compute the
overlap between such representations over a given range of coordinate
transformations. In the SPF representation, it is natural to partition the
search space into one translational and five rotational degrees of freedom
and to make the translational direction coincide with the intermolecular axis
located on the z-axis. Figure 2 illustrates this arrangement. Letting A(r) and
B(r) represent 3D scalar properties of the receptor and ligand, respectively,
and assuming both molecules are initially co-located at the origin, then the
overlap between these functions in a general orientation may be expressed as:

E ≡E(βA,γA,αB,βB,γB,R)

=
∫

(T̂ (−R)R̂(0,βA,γA)A(r))∗(R̂(αB,βB,γB)B(r))dr
(8)

where the asterisk denotes complex conjugation, and where the operators
R̂(0,βA,γA), R̂(αB,βB,γB) and T̂ (−R) represent the actions of rotating the
receptor and ligand about the origin, and translating the receptor along the
negative z-axis, respectively. A positive translation of the rotated ligand
could equally be used. Figure 3 illustrates the main processing steps in
this approach.

Now it can be shown (Ritchie, 2005) that a positive translation of the SPF
basis functions by an amount R along the positive z-axis may be expressed as:

T̂ (R)Rnl(r)Ylm(θ,φ)=
∞∑
kj

T (|m|)
kj,nl (R)Rkj(r)Yjm(θ,φ) (9)

where T (|m|)
kj,nl (R) represents a matrix element of the translation operator. These

real quantities are independent of the sign of m, but they vanish if |m|> l or
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Fig. 2. Left: the relationship between the spherical polar (r,θ,φ) and
Cartesian (x,y,z) coordinate systems; right: schematic illustration of the
6D rigid body search space in terms of one translational coordinate, R,
and five Euler rotational coordinates, (βA,γA) and (αB,βB,γB), assigned
to the receptor and ligand, respectively. Following the usual Euler angle
convention, β rotations refer to the y-axis, and α and γ rotations refer
the z-axis.

|m|> j, and also if j≥k or l≥n. From the orthogonality of the basis functions,
it follows that translated expansion coefficients may be calculated as:

Anlm(R)=
∞∑
kj

T (|m|)
nl,kj (−R)Akjm =

∞∑
kj

T (|m|)
kj,nl (R)Akjm. (10)

Similarly, it can be shown that rotated expansion coefficients may be
calculated using the Wigner D(l) matrices:

Akjm(α,β,γ )=
∑

s

D(j)
ms(α,β,γ )Akjs, −l≤s≤ l. (11)

Hence the overlap expression becomes

E =
∑

kjsmnlv

D(j)∗
ms (0,βA,γA)A∗

kjsT
(|m|)
kj,nl (R)D(l)

mv(αB,βB,γB)Bnlv. (12)

Summing over the k and n radial subscripts then gives

E =
∑
jsmlv

D(j)∗
ms (0,βA,γA)S(|m|)

js,lv (R)D(l)
mv(αB,βB,γB) (13)

where S(R) is a reduced translation/overlap matrix given by

S(|m|)
js,lv (R)=

∑
kn

A∗
kjsT

(|m|)
kj,nl (R)Bnlv, k > j;n> l. (14)

The Wigner rotation matrix elements are defined as

D(l)
mm′ (α,β,γ )=e−imαdl

mm′ (β)e−im′γ (15)

where the real dl
mm′ (β) are often expressed in terms of Jacobi polynomials

(Biedenharn and Louck, 1981). Here, it is convenient to expand dl
mm′ (β) as

a product of complex exponentials (Edmonds, 1957):

dl
mm′ (β)=

∑
t

eimπ/2dl
mt(−π/2)e−itβdl

tm′ (π/2)e−im′π/2. (16)

Then, writing
�l

tm =dl
tm(π/2)=dl

mt(−π/2) (17)

and collecting constants

	tm
lm′ =ei(m−m′)π/2�l

tm�l
tm′ = im−m′

�l
tm�l

tm′ (18)

gives
D(l)

mm′ (α,β,γ )=
∑

t

	tm
lm′ e−imαe−itβe−im′γ . (19)

Substituting Equation (19) twice into Equation (13) gives the fully
factorized result

E =
∑

jsmlvrt

	rm
js S(|m|)

js,lv (R)	tm
lv e−i(rβA−sγA+mαB+tβB+vγB) (20)

where the summation ranges over all subscript values that satisfy |r|≤ j,|s|≤
j,|t|≤ l,|v|≤ l and |m|≤min(l, j)≤L. In this equation, r and t enumerate
azimuthal frequency components, and s,v and m enumerate circular
frequencies. We call Equation (20) the docking correlation master equation.
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anlm coefficients

(a) Sampling protein properties

(b) Docking pairs of proteins

Calculate realSample protein
properties onto 3D
Cartesian grid
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complex receptor
coefficients, Anlm

Convert Cartesian 
(x,y,z) coordinate
samples to SPF (r,θ,φ)

Rotate complex
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score

Convert real

to complex Anlm
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Rank and
save docking
predictions
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SPF property
coefficients, anlm

Calculate product
of transformed
coefficients: A.B

Fig. 3. Conceptual flowcharts showing the main processing steps in the SPF approach to protein–protein docking. In practice, the rotations for the ligand or
for both the ligand and receptor are computed en masse in 3D or 5D FFT rotational grids, respectively.

2.2 An analytic 5D FFT generating function
Equation (20) gives a compact analytic recipe for calculating the overlap
function for an arbitrary point in the 6D docking space from the initial
SPF expansion coefficients. However, considering the number of subscripts
in Equation (20), performing point-wise summations at a given set of
coordinates would clearly cost O(N7) arithmetic operations per point.
Hence it is essential to use FFT techniques to accelerate the calculation.
However, because Euler rotation angles have the ranges 0≤α,γ <360o

and 0≤β <180o, it is useful to change the sign of the γA rotation and to
scale the β rotation angles so that all rotational coordinates map to the
natural phase and period of the FFT. If this is not done, the FFT calculation
will over sample the β coordinates to give duplicate solutions, each at
half the desired resolution. Scaling the β coordinates eliminates this effect
and allows a smaller FFT grid to be used, thus halving the amount of
computer memory required for each β dimension and speeding up the FFT
calculation.

Dealing with the sign of γA is straightforward. For example, putting γ ′
A =

−γA, and writing
eisγA =

∑
q

ηsqe−iqγ ′
A , (21)

and using the orthogonality of the exponentials to solve for the coefficients,
ηsq, gives

ηsq =δsq (22)

where δ is the Kronecker delta, and q≡−q. Similarly, the β rotations may
be scaled by putting β ′ =2β and writing

e−itβ =
∑

u

λtue−iuβ ′
, (23)

and again using the orthogonality of the exponentials to solve for the
coefficients λtu. In this case, it can be shown using basic trigonometric
relations that the coefficients are given by

λtu =




2i/π (2u−t) if t is odd,

1 if t =2u,

0 otherwise.

(24)

In other words, there exist exact solutions when t is even, and convergent
power series solutions when t is odd. However, for current purposes, the
coefficients λtu may be determined to reproduce exactly a finite set of Mβ

rotational samples by treating Equation (23) as a discrete Fourier transform
analysis equation:

λtu = 1

Mβ

Mβ−1∑
n=0

e−π itn/Mβ e2π iun/Mβ . (25)

Other angular ranges may be scaled onto the natural FFT period in a similar
manner. Substituting the above changes of variable into Equation (20) and
applying an inverse Fourier transform to the result gives

E[p,q,m,u,v;R]=
∑

rt

∑
jl

	rm
jq S(|m|)

jq,lv (R)	tm
lv λrpλtu. (26)

Collecting coefficients as

um
lv =

∑
t

	tm
lv λtu (27)

gives the final recipe for calculating the FFT grid:

E[p,q,m,u,v;R]=
∑

jl


pm
jq S(|m|)

jq,lv (R)um
lv . (28)

Applying a forward Fourier transform to this expression will produce a 5D
array of E(βA,γA,αB,βB,γB,R) function values for unique combinations of
Euler rotation angles. Hence Equation (28) may be interpreted as an analytic
GF for 5D FFT docking correlations. This is the main theoretical contribution
of this article.

2.3 Multi-dimensional FFTs
In Equation (28) it can be seen that the double sum over the jl subscripts
means that the cost of initializing each 5D FFT grid cell scales as O(N2) and
therefore the overall cost of setting up a 5D FFT scales as O(N7). Hence it
is expedient to calculate Equation (28) as

Wpqm
lv (R)=

∑
j


pm
jq S(|m|)

jq,lv (R) (29)

and
E[p,q,m,u,v;R]=

∑
l

Wpqm
lv (R)um

lv . (30)

Thus, by using a temporary array, W , the O(N7) ‘set-up’ cost of a 5D FFT
can be computed practically using two O(N6) steps. The double sum in the
expression for the reduced overlap matrix, Equation (14), may be calculated
efficiently in a similar way. However, using a large intermediate array makes
significant additional demands on the available computer memory. One
way to reduce the memory requirement is to set γA =0 in the correlation
expression and to explicitly rotate the receptor expansion coefficients before
applying the FFT to obtain the 4D GF:

E[p,m,u,v;R,γA]=
∑
jql


pm
jq S(|m|)

jq,lv (R,γA)um
lv (31)

where

S(|m|)
jq,lv (R,γA)=

N∑
kn

A∗
kjq(γA)T (|m|)

kj,nl (R)Bnlv (32)

and Akjq(γA) represents a rotated expansion coefficient. In principle, a 6D
docking search could be performed by iterating over pairs of (R,γA) samples
and by calculating 4D FFTs of the remaining rotation angles. However, this
approach can immediately be seen to be impractical because the triple sum
in Equation (31) indicates that the set-up cost of initializing a 4D FFT grid
is still O(N7). On the other hand, the GF complexity falls significantly if
the βA rotation angle is dropped from the FFT. For example, by explicitly
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transforming the receptor expansion coefficients using Equations (10)
and (11):

Anlm(R,βA,γA)=
∑
kjq

T (|m|)
nl,kj (−R)D(l)

mq(0,βA,γA)Akjq, (33)

the 3D GF is found to be:

E[m,u,v;R,βA,γA]=
∑

l

Sm
lv (R,βA,γA)um

lv (34)

where
Sm

lv (R,βA,γA)=
∑

n

A∗
nlm(R,βA,γA)Bnlv, n> l. (35)

Hence, it can be seen that the set-up cost for a 3D rotational FFT essentially
scales as O(N4) per receptor orientation. For the sake of completeness, the
2D GF has the same structure and set-up complexity as above, and may be
stated as

E[m,u;R,βA,γA,γB]=
∑

lv

Sm
lv (R,βA,γA,γB)um

lv . (36)

Therefore, like the 4D case, 2D correlations may be dismissed as being
computationally impractical. The 1D GF [FFT set-up complexity O(N3) per
αB twist angle search] was implemented previously in real form (Ritchie and
Kemp, 2000) and is given by

E[m;R,βA,γA,βB,γB]=
∑

nl

A∗
nlm(R,βA,γA)Bnlm(βB,γB). (37)

2.4 Multi-property FFTs
It is well known that the correlation between two pairs of real properties
may be calculated simultaneously using one complex FFT. For example, if
the in vacuo electrostatic potential and charge density of a system of two
proteins, A and B, are written as

φ(r)=φA(r)+φB(r)

ρ(r)=ρA(r)+ρB(r),
(38)

and if linear combinations of the SPF expansions are formed as

A= UT (aφ +iaρ )

B= UT (bρ +ibφ ),
(39)

where UT is the transpose of the complex-to-real unitary transformation
matrix U [c.f. Equations (1), (3), and (5)], then the electrostatic interaction
energy for a pairwise orientation may be calculated as:

E =Re(A∗B). (40)

Similarly, dropping summation subscripts and using matrix notation for the
6D electrostatic interaction energy GF [Equation (28)] gives:

E[p,q,m,u,v;R]=pqmSqmv(R)uvm. (41)

However, it follows from the linearity of this expression that
multiple interaction energy correlations e=0,1,2,... may be computed
simultaneously by first summing the distance-dependent part of each
potential/density interaction:

(
Sqmv

e (R)
)

jl =
∑
kn

Ae∗
kjqT (|m|)

kj,nl (R)Be
nlv, (42)

to give

E[p,q,m,u,v;R]=pqm(∑
e

Sqmv
e (R)

)
uvm. (43)

Thus, arbitrary combinations of correlations may be evaluated together in a
single 5D FFT with very little additional cost.

2.5 Multi-resolution FFTs
It is worth noting that there is no requirement for the FFT grid dimensions to
correspond exactly to the polynomial order of the SPF basis functions. For
example, a low order GF may be evaluated on a high order FFT grid and
vice versa. This corresponds to padding the FFT grid with zeros or excluding
components that exceed the grid boundaries, respectively. Therefore, it is
important to consider carefully both the polynomial expansion order and the
FFT grid dimensions, as each can significantly influence overall performance.
It was shown previously (Ritchie, 2003); (Ritchie and Kemp, 2000) that
the use of polynomial expansion orders in the range L = 24 to 30 is often
sufficient to give satisfactory resolution when docking globular protein
domains. According to Shannon sampling theory, this implies an angular
FFT grid dimension of at least M = 2L = 48 should be used for thorough
rotational sampling. This corresponds to using an angular search increment
of 360o/48 = 7.5o, which is somewhat finer than the rotational step sizes
conventionally used in Cartesian FFT algorithms. Nonetheless, because two
of the five rotational degrees of freedom can be described using Euler angles
which range from 0◦ to 180◦, it is evident that a 5D FFT grid of, e.g. 483 ×242

cells can be accommodated in <1GB of computer memory if grid values are
stored as single precision complex numbers (8 bytes per grid cell). Because
1 GB of memory is normally available on contemporary 32-bit computers,
this level of angular resolution will be used in the following calculations.

3 RESULTS AND DISCUSSION

3.1 FFT performance comparison
As a first test of the utility of the multi-dimensional FFT approach,
the HyHel-5/lysozyme complex (Fig. 1) was docked at a range of
expansion orders, L, using the conformation of the bound antibody
Fv fragment and unbound lysozyme. Table 1 presents a comparison
of the accuracy and execution times of shape-only and shape plus
electrostatic correlations for this example. All calculations sampled
53 translational steps of ±0.75Å from the initial orientation of the
complex. To facilitate comparison of the 3D and 5D correlations
with the existing 1D radix-2 FFT implemented in Hex, Mα =64
was used for the twist angle dimension. The 3D and 5D grids each
used Mγ = 48 and Mβ = 24 to give (β,γ ) increments of 7.5◦. The
remaining rotational degrees of freedom in the 3D and 1D cases,
respectively, used one and two icosahedral tesselations of the sphere,
each of 812 vertices, to generate rotational samples with an average
angular separation of around 7.7◦. Considering that the Euler grids
tend to oversample near the poles, this scheme gives broadly
equivalent sampling densities with around 1.7, 2.5 and 3.5 billion
docking orientations for the 1D, 3D and 5D cases, respectively.

As expected, Table 1 shows that high order expansions generally
assign a better rank to near-native orientations than low order
expansions, but this trend is not necessarily monotonic. The best
combination of a good rank and low ligand root mean squared
(RMS) deviation from the complex is typically obtained with L = 28
or L = 30. This table also shows that shape-only 3D FFTs are around
three times faster than the 1D calculation and, surprisingly, are also
generally faster than 5D FFTs. However, due to the linearity of the
GF, the cost of including electrostatics in 3D and 5D correlations is
low compared to the cost of computing 1D shape plus electrostatic
FFTs. Indeed, 5D FFTs of shape plus electrostatics are faster than
3D FFTs when L ≥26. These differences would become more
pronounced if more potentials were included in the calculation.

Nonetheless, considering the enormous size of the search
space, the vast majority of the orientations computed in the FFT
are vacuous. As it is reasonable to expect that good docking
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Table 1. Comparison of shape-only and shape plus electrostatic docking correlations for the HyHel-5/lysozyme complex

L 1D shape-only 1D shape+electro 3D shape-only 3D shape+electro 5D shape-only 5D shape+electro

Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m

16 646 (6.8) 28.7 428 (8.0) 52.0 864 (7.1) 15.1 254 (8.2) 18.1 – 37.5 669 (6.0) 40.3
20 336 (1.2) 52.7 20 (1.3) 102.7 410 (1.2) 23.5 17 (1.3) 29.2 336 (7.9) 39.3 29 (1.3) 46.5
24 417 (1.2) 92.4 52 (1.2) 184.2 501 (1.2) 33.2 53 (1.2) 51.2 833 (1.2) 53.0 82 (1.2) 56.2
26 49 (1.2) 123.3 15 (1.2) 243.1 48 (1.2) 43.5 15 (1.6) 69.0 45 (1.2) 58.7 13 (1.6) 63.1
28 54 (1.5) 158.1 8 (1.2) 315.6 22 (5.2) 54.2 11 (1.3) 92.2 19 (5.5) 64.5 13 (1.2) 71.7
30 113 (2.2) 203.5 43 (1.3) 403.0 47 (1.6) 69.8 20 (1.6) 122.5 61 (1.6) 74.3 19 (1.6) 108.0

In the table L is the polynomial order of the expansion, Rank is the rank of the first orientation found in which the ligand is within 10 Å RMS (shown in parentheses) of the crystal
structure after clustering with the default Hex clustering threshold. A hyphen indicates no near-native orientation found within the top 2000 solutions. Time is the total computation
time in minutes on a single processor 1.8 GHz Pentium Xeon PC. The 3D and 5D FFT calculations used Kiss FFT. For those calculations, the time spent within the FFT library is
essentially constant at 13.1 and 34.3 min, respectively. All timings exclude the calculation of the translation matrix elements.

orientations should score well at all expansion orders, one way to
reduce the amount of computation is to perform an initial scan of the
search space using low order expansions and to rescore only the best
orientations at high order. Table 2 shows the results obtained using
this approach in which the best 30 000 partial (βA,γA,βB,γB,R)
orientations are each resampled using up to four translational steps
of ±0.2 Å and rescored using 1D correlations in αB using L = 30.
To avoid oversampling rotations near the (β,γ ) poles in the 3D
and 5D scans, all orientations from the FFT grids were mapped
to icosahedral tesselation samples using a look-up table, and only
distinct pairs of tesselation orientations were retained for rescoring.
Table 2 shows that this two-stage scoring approach finds comparable
orientations to high order searches in considerably less time, with
only a small drop in the quality of the solutions. Because higher
order scans tend to give better RMS deviations, we use L = 20 as a
good compromise between speed and accuracy.

3.2 Protein docking benchmark performance
In order to evaluate the approach more exhaustively, the above
correlation protocol was applied to the 84 complexes of version 2 of
the Protein Docking Benchmark (Mintseris et al., 2005). To provide
a consistent pseudo-random starting orientation, all proteins were
initially oriented by least-squares fitting to the complex, and a
small off-grid rotation, R̂(α,β,γ ) = R̂(11◦,9◦,0), was then applied
to the ligand. The orientations calculated in each docking run were
clustered using a greedy algorithm with a 9 Å clustering threshold
(Kozakov et al., 2005), and the lowest energy member of each cluster
was selected as the ‘solution’ for that cluster. All other members of
each cluster were discarded.

Seven different docking runs were performed for each complex to
assess the shape-based and electrostatic components of the scoring
function, and to investigate the difference between blind docking
and the use of prior knowledge of one or both protein’s binding
sites. The results are shown in Table 3. The first set of figures in
this table give the results for blind shape-only docking of bound
subunits, presented as the rank and deviations of the first solution
found within 10 Å RMS deviation of the complex (here called a
‘hit’) along with the total number of such hits found within the top
2000 solutions. This threshold broadly corresponds to the definition
of an ‘acceptable’ prediction under the CAPRI assessment criteria
(Méndez et al., 2003). Although the final goal is to dock unbound

Table 2. Two-stage shape plus electrostatic docking results for
HyHel-5/lysozyme

L 1D 3D 5D

Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m

16 23 (1.5) 27.7 19 (1.5) 21.3 26 (1.6) 30.3
18 27 (1.3) 37.2 22 (1.3) 27.5 27 (1.3) 29.7
20 32 (1.3) 45.2 29 (1.3) 29.5 17 (1.3) 37.5

The table shows the results obtained by performing blind low order shape-only scans
of the search space at the given order, followed by 1D L = 30 shape plus electrostatic
refinement of the top 30 000 orientations.

subunits, consideration of bound docking results provides a practical
way to identify complexes which will a priori be expected to be
difficult to dock acceptably in the unbound case. Encouragingly,
acceptable solutions are found within the top 10 in 33 cases, and
within the top 20 in 37 cases. This shows that the Hex shape-based
scoring function can often identify near-native crystallographic
orientations.

However, these results also show that Hex fails to find
an acceptable bound–bound solution for 22 of the Benchmark
complexes. Visual inspection of these complexes shows that several
(1AK4, 1GHQ, 1KTZ, 1BJ1, 1QFW, 2QFW and 1ATN) have
particularly small interface areas, which would therefore be expected
to be difficult for any shape-based docking algorithm to identify.
Furthermore, several of the other failing complexes include at least
one large protein domain (e.g. 1KLU, 1ML0, 1KKL, 1HE8, 1N2C,
1DE4, 1H1V and 2HMI) which cannot accurately be encoded in the
standard Hex radial function. Hence, these cases will also be difficult
for the Hex scoring function. Of the remaining failing complexes,
several are antibody/antigen complexes (e.g. 1DQJ, 1E6J, 1WEJ,
2VIS), and it is generally not necessary to perform completely blind
docking calculations on such well understood systems.

The rest of Table 3 presents results for docking unbound
structures.As expected, the rank of the best shape-only blind docking
solution is often considerably poorer compared to docking bound
components, with only 6 complexes being ranked within the top
20. On the other hand, including the ETO electrostatic interaction
term in the correlation often improves the rank of the best solution,
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Table 3. Hex results for the Docking Benchmark (version 2)

Code B–B shape-only U–U shape-only U–U shape+elec U–U shape-only U–U shape+elec U–U shape-only U–U shape+elec
Blind search Blind search Blind search One Constraint One Constraint Two Constraints Two Constraints

Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits

Rigid-Body (63)
1AVX 46 (4.8) 20 108 (8.9) 7 111 (8.9) 4 40 (8.9) 12 75 (9.0) 14 18 (9.0) 43 12 (9.0) 45
1AY7 40 (8.9) 16 645 (9.9) 4 – – 99 (3.5) 20 234 (9.8) 1 17 (6.7) 39 17 (9.7) 18
1BVN 1 (1.1) 29 63 (9.1) 20 389 (9.6) 7 29 (9.6) 35 3 (6.6) 36 4 (5.1) 49 2 (9.6) 39
1CGI 1 (0.7) 24 42 (9.4) 17 47 (4.6) 9 20 (9.4) 14 42 (9.8) 11 4 (9.4) 31 4 (4.6) 24
1D6R 273 (1.3) 24 447 (7.7) 1 119 (7.6) 4 49 (7.7) 8 31 (7.7) 8 8 (7.7) 37 5 (7.7) 31
1DFJ 167 (4.2) 14 17 (9.5) 14 1 (4.2) 30 3 (9.5) 24 1 (4.2) 30 2 (9.5) 32 1 (4.2) 35
1E6E 1 (2.1) 14 109 (5.6) 10 5 (2.2) 24 24 (5.6) 19 3 (1.5) 29 5 (5.6) 38 1 (7.7) 49
1EAW 1 (1.0) 17 9 (5.0) 20 1 (4.0) 37 7 (5.0) 25 1 (4.0) 35 1 (5.0) 42 1 (4.0) 42
1EWY 19 (7.7) 16 76 (9.1) 12 24 (9.7) 14 114 (8.1) 12 103 (6.8) 7 9 (8.1) 37 9 (7.6) 23
1EZU 2 (0.9) 13 – – – – – – – – 86 (6.7) 10 287 (6.2) 4
1F34 1 (1.4) 25 124 (6.7) 11 – – 48 (7.1) 15 – – 11 (5.4) 22 26 (6.5) 11
1HIA 3 (1.2) 30 51 (8.7) 6 8 (8.9) 15 72 (8.7) 21 15 (9.9) 22 15 (6.7) 33 6 (8.3) 32
1MAH 1 (0.9) 16 2 (1.2) 20 1 (1.1) 28 1 (1.2) 27 1 (1.2) 30 1 (1.2) 33 1 (1.2) 30
1PPE 1 (1.0) 42 2 (9.7) 47 4 (3.0) 31 1 (9.7) 49 1 (3.0) 46 1 (3.0) 43 1 (3.0) 45
1TMQ 1 (2.1) 19 356 (5.9) 9 427 (6.0) 6 45 (5.9) 21 264 (2.3) 7 7 (5.9) 39 10 (6.6) 38
1UDI 1 (1.6) 17 8 (6.2) 9 20 (6.2) 10 4 (6.2) 22 7 (6.2) 25 1 (6.2) 32 5 (6.2) 37
2MTA 11 (1.4) 18 136 (9.0) 4 79 (9.8) 20 38 (9.0) 17 12 (8.4) 24 15 (7.7) 33 15 (8.7) 31
2PCC 1007 (9.1) 1 – – 18 (6.9) 33 14 (9.3) 20 12 (5.1) 31 5 (9.3) 37 14 (6.3) 44
2SIC 3 (0.7) 10 57 (8.8) 8 – – 21 (8.9) 10 44 (1.0) 9 4 (8.9) 31 4 (1.0) 35
2SNI 1 (1.5) 18 256 (9.6) 7 101 (9.6) 6 39 (7.1) 15 40 (4.4) 11 5 (7.1) 31 5 (4.4) 25
7CEI 5 (1.3) 17 61 (8.7) 5 4 (8.4) 19 11 (8.7) 17 3 (8.4) 22 2 (8.7) 29 1 (8.4) 35
1AHW 6 (1.9) 10 234 (8.0) 3 7 (8.0) 12 31 (8.0) 12 5 (8.0) 40 3 (8.0) 42 5 (8.0) 38
1BVK 44 (1.5) 6 – – 508 (6.7) 7 134 (9.4) 7 184 (6.8) 10 71 (9.9) 23 22 (6.8) 24
1DQJ – – – – – – 216 (8.6) 6 440 (9.9) 2 22 (8.6) 24 73 (8.1) 11
1E6J – – – – – – 26 (8.9) 12 16 (8.4) 22 2 (8.9) 37 4 (8.4) 41
1JPS 24 (1.3) 5 – – 36 (8.8) 11 170 (6.6) 9 14 (6.6) 27 15 (6.6) 29 1 (8.8) 30
1MLC 62 (1.2) 5 408 (3.6) 2 – – 25 (3.6) 13 22 (3.7) 28 3 (3.6) 29 2 (3.7) 23
1VFB 23 (1.1) 3 – – – – 97 (9.1) 14 51 (7.1) 10 14 (9.1) 36 12 (7.1) 35
1WEJ – – – – – – 26 (1.7) 13 2 (1.7) 20 8 (1.7) 29 1 (1.7) 37
2VIS – – – – – – – – – – – – – –
1A2K 29 (5.4) 12 – – – – – – – – 186 (9.3) 5 274 (9.1) 4
1AK4 – – – – – – – – – – – – – –
1AKJ 30 (8.4) 25 209 (9.6) 10 17 (9.4) 27 110 (6.3) 15 23 (2.7) 35 23 (9.6) 36 5 (9.6) 48
1B6C 3 (1.8) 19 593 (9.0) 2 755 (8.9) 2 88 (9.0) 5 133 (8.5) 5 19 (9.0) 27 7 (9.7) 36
1BUH 28 (1.0) 9 743 (7.7) 2 289 (7.8) 4 52 (7.7) 14 19 (7.7) 13 28 (7.7) 19 8 (7.7) 18
1E96 133 (1.1) 5 – – 302 (8.6) 2 246 (9.4) 6 119 (8.6) 8 37 (9.7) 13 43 (8.5) 20
1F51 3 (1.4) 21 371 (9.6) 5 – – 149 (9.6) 12 58 (9.3) 3 9 (7.6) 19 8 (7.5) 27
1FC2 605 (6.5) 2 – – – – – – – – – – 297 (7.7) 10
1FQJ 7 (1.0) 14 41 (8.0) 12 7 (7.9) 14 14 (8.0) 21 7 (7.7) 28 5 (7.8) 31 4 (7.7) 41
1GCQ 1 (1.0) 16 – – – – – – – – 92 (6.2) 6 – –
1GHQ – – – – – – 828 (8.9) 2 – – 30 (8.9) 13 175 (6.7) 6
1HE1 1 (1.5) 24 37 (6.4) 18 88 (6.3) 15 10 (6.4) 26 28 (7.2) 25 2 (7.6) 39 9 (7.2) 39
1I4D 31 (1.5) 19 – – – – – – – – 505 (8.1) 1 481 (9.4) 1
1KAC 36 (1.2) 7 687 (8.7) 1 271 (8.9) 5 7 (4.4) 19 4 (4.4) 26 4 (4.4) 33 2 (4.4) 32
1KLU – – – – – – – – – – 591 (9.7) 2 – –
1KTZ – – – – – – – – – – 238 (9.4) 4 25 (6.0) 10
1KXP 1 (1.1) 22 36 (9.4) 13 1 (7.5) 13 15 (9.4) 19 1 (6.9) 30 7 (9.4) 24 1 (6.9) 29
1ML0 – – – – – – 7 (9.1) 8 33 (7.0) 11 1 (9.1) 22 3 (5.6) 27
1QA9 86 (5.9) 7 – – 161 (9.9) 3 587 (7.5) 8 481 (6.8) 4 25 (5.3) 28 23 (4.5) 28
1RLB 409 (8.8) 2 – – – – – – – – 305 (6.3) 7 384 (6.3) 6
1SBB – – – – – – – – – – – – – –
2BTF 5 (0.8) 8 – – – – 133 (8.6) 13 16 (6.7) 22 32 (8.6) 19 4 (6.7) 34
1BJ1 – – – – – – – – – – 7 (6.7) 13 10 (6.9) 10
1FSK 10 (1.3) 16 5 (1.8) 16 6 (1.4) 10 1 (1.8) 31 1 (1.8) 31 1 (1.8) 43 1 (1.8) 46

(continued)
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Table 3. Continued.

Code B–B shape-only U–U shape-only U–U shape+elec U–U shape-only U–U shape+elec U–U shape-only U–U shape+elec
Blind search Blind search Blind search One Constraint One Constraint Two Constraints Two Constraints

Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits

1I9R 5 (5.7) 14 82 (2.1) 8 4 (2.1) 15 23 (2.1) 19 13 (2.1) 26 7 (2.1) 29 5 (2.1) 26
1IQD 42 (0.7) 8 – – 760 (1.4) 3 276 (6.1) 7 5 (6.1) 16 5 (9.4) 27 3 (6.1) 29
1K4C 24 (0.7) 4 21 (9.6) 1 – – 4 (9.6) 3 311 (9.6) 2 2 (9.6) 17 46 (9.6) 19
1KXQ 6 (5.5) 10 488 (7.1) 5 35 (6.3) 12 48 (7.1) 16 27 (7.1) 15 27 (7.1) 18 24 (7.1) 16
1NCA 1 (1.1) 11 116 (1.2) 5 139 (1.9) 3 20 (1.2) 13 8 (0.9) 16 2 (9.9) 22 3 (0.9) 30
1NSN 11 (1.7) 8 142 (1.5) 6 – – 18 (1.5) 19 14 (1.5) 12 6 (1.5) 22 3 (1.5) 23
1QFW – – – – – – – – – – 333 (6.3) 3 37 (6.3) 6
2QFW – – – – – – – – – – 522 (9.7) 1 – –
2JEL 10 (1.1) 10 164 (6.0) 3 – – 7 (6.0) 27 4 (5.6) 29 6 (6.0) 39 2 (6.0) 38
Mean 25 (4.1) 11 242 (8.4) 5 156 (8.1) 7 66 (7.6) 13 46 (7.0) 14 15 (7.3) 25 13 (6.7) 25

Medium Difficulty (13)

1ACB 36 (0.9) 8 694 (8.3) 3 674 (8.5) 2 156 (8.3) 7 163 (8.3) 1 10 (8.3) 33 88 (8.4) 14
1KKL – – – – – – 48 (8.6) 18 94 (8.4) 10 8 (8.7) 40 14 (8.0) 31
1BGX 1 (3.0) 3 – – – – – – – – – – – –
1GP2 – – – – 419 (6.9) 5 – – 137 (7.1) 8 113 (5.6) 12 68 (7.1) 17
1GRN 1 (1.3) 13 914 (9.1) 2 586 (2.5) 5 661 (7.1) 4 27 (6.3) 23 14 (7.4) 31 20 (6.3) 29
1HE8 – – – – – – – – – – – – – –
1I2M 1 (1.8) 17 – – 29 (5.4) 24 754 (8.5) 3 15 (8.5) 24 107 (6.7) 14 21 (8.5) 24
1IB1 10 (5.0) 13 – – – – – – – – 14 (9.8) 13 22 (9.9) 7
1IJK 189 (3.0) 10 1012 (8.7) 3 – – 145 (8.7) 5 383 (8.7) 1 14 (8.7) 18 70 (8.7) 5
1K5D 406 (5.9) 4 – – 146 (7.6) 3 – – 128 (9.1) 5 377 (7.6) 4 21 (9.7) 17
1M10 429 (9.1) 4 514 (9.5) 2 48 (9.2) 4 130 (9.5) 4 46 (9.3) 6 13 (9.5) 8 124 (8.4) 12
1N2C – – – – – – – – – – – – – –
1WQ1 1 (1.5) 26 125 (7.1) 10 16 (7.2) 17 34 (7.1) 14 13 (7.1) 20 6 (7.1) 27 3 (7.1) 33
Mean 50 (5.5) 8 782 (9.5) 1 329 (8.2) 5 306 (8.8) 5 153 (8.7) 8 58 (8.4) 15 66 (8.6) 15

Difficult (8)

1ATN – – – – – – – – – – – – – –
1DE4 – – 946 (8.6) 1 15 (8.4) 3 164 (8.6) 3 – – 184 (8.5) 8 35 (9.9) 8
1EER 1 (4.0) 25 609 (9.2) 8 43 (9.2) 16 106 (7.6) 18 30 (7.7) 18 34 (7.6) 23 39 (7.7) 13
1FAK – – – – – – – – – – 768 (7.0) 2 221 (7.0) 8
1FQ1 162 (5.6) 5 – – – – 469 (8.4) 2 – – 82 (8.4) 5 508 (8.4) 3
1H1V – – – – – – – – – – – – – –
1IBR 4 (3.0) 27 – – – – – – – – 314 (8.8) 4 68 (8.4) 6
2HMI – – – – – – – – – – – – – –
Mean 168 (7.8) 7 933 (9.7) 1 399(9.7) 2 549 (9.3) 3 359 (9.3) 3 325 (8.8) 5 238 (8.9) 5

In the table, B–B and U–U denote bound–bound and unbound–unbound docking, respectively. A hyphen denotes no acceptable solution within the top 2000, in which case a value
of 10Å is used when calculating the mean RMS deviation. Means of ranks were calculated using the MLR formula, Equation (44). for antibody/antigen complexes (1AHW, 1BVK,
1DQJ, 1E6J, 1DQJ, 1JPS, 1MLC, 1VFB, 1WEJ, 2VIS, 1BJ1, 1FSK, 1I9R, 1IQD, 1K4C, 1KXQ, 1NCA, 1NSN, 1QFW, 2QFW, 2JEL, 1BGX, 2HMI), the Cα coordinates of heavy
chain residue 37 were used as the antibody coordinate origin. For all other structures, the centre of mass was used as the coordinate origin. It should be noted that the Docking
Benchmark includes several antibody complexes (1BJ1, 1FSK, 1I9R, 1IQD, 1K4C, 1KXQ, 1NCA, 1NSN, 1QFW, 2QFW, 2JEL, 2HMI) for which only the bound antibody Fab
coordinates are available.

giving 16 complexes within the top 20. However, using electrostatic
correlations can worsen the prediction in some cases, but it is not
clear how to predict ab initio as to which those cases might be.

Nonetheless, in practice, it is becoming increasingly rare that
completely blind docking is necessary because, like the antibody
families, biochemical or biophysical knowledge is often available to
indicate the identities of key interaction residues. Hence, four further
constrained docking runs were performed for each complex to
simulate such data-driven docking scenarios. Here, the range of the
FFT searches were constrained by applying the restriction βA ≤45◦
to simulate using knowledge of the receptor binding site (tabulated
as ‘One Constraint’), and additionally βB ≤45◦ corresponding to

using knowledge of both the receptor and ligand binding sites
(‘Two Constraints’). These constraints each reduce the size of the
search space and corresponding FFT grid dimensions by a factor
of about four, and speed up the FFT scan correspondingly. Thus,
for constrained docking runs, overall calculation times of just a few
minutes arise largely from the L = 30 rescoring stage. Specifying
a receptor constraint of βA =45◦ would physically correspond to
spinning an antigen over the antibody hypervariable loop region in
an antibody/antigen complex, as illustrated in Figure 2, for example.
In general, Hex allows a given receptor and ligand residue to be
rotated onto the z-axis before each docking run. Hence, for example,
by setting small values for the βA and βB angular ranges, it is
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straightforward to focus a docking calculation around a given pair
of residues in a known or hypothesized protein–protein interface.

As can be seen from Table 3, the above rather loose constraints
are often sufficient to improve considerably the rank of near-
native solutions. For example, using only the receptor constraint
is sufficient to increase the rate of acceptable solutions from 6 to
17 within the top 20. Adding the Hex electrostatic correlation term
boosts this improvement to 28 within the top 20. Applying a similar
ligand constraint further improves the success rate to 48 in the
top 20 and 35 in the top 10 for shape only correlations, or 45 in
the top 20 and 37 in the top 10 for shape plus electrostatics. It is
worth noting that constrained docking also improves the results for
several complexes that the rigid body docking runs indicated would
be intrinsically difficult to dock predictively (specifically 1GHQ,
1KTZ, 1ML0, 1BJ1, 1QFW, 1KKL and 1DE4).

In order to compare such trends more objectively, Table 3 presents
overall average results for each set of calculations. Here, we
calculate the mean rank using the mean of the logarithm of the
rank (MLR) of each first acceptable hit according to:

MLR =exp{ 1

NC

NC∑
i=1

ln(min(Ranki,1000))}, (44)

where NC is the number of complexes in each Benchmark category.
Limiting poor results to a value of 1000 in this formula helps to
prevent outliers from adversely biasing the overall score. Hence the
MLR score ranges from 1 (rank 1 hits for all complexes) to 1000
(no hits for any complex). The MLR figures in Table 3 readily show
the benefit of using just one, or preferably two, loose constraints to
enrich the number of high ranking predictions in each Benchmark
category. This benefit is most dramatic in the Rigid-Body category,
although using two constraints also significantly enhances the results
for both the Medium Difficulty and Difficult categories.

4 CONCLUSION
Analytic GF expressions have been presented for calculating multi-
dimensional multi-property rotational FFT docking correlations.
Scaling Euler angle ranges onto the natural period of the FFT
provides a straightforward way to accelerate the calculation and
to focus the correlation around the region(s) of interest. This also
reduces overall memory requirements and, for the first time, allows
5D FFT docking to be performed on an ordinary PC. Here, 3D
shape-only and shape plus electrostatic FFTs are found to be
around three times faster than the 1D FFT previously implemented
in Hex but, surprisingly, 3D FFTs are also often faster than 5D
FFTs. On the other hand, multiple properties may be correlated
simultaneously in the 5D FFT, and this is expected to be particularly
advantageous when calculating high order correlations of multi-term
knowledge-based protein–protein interaction potentials.

Currently, a two-stage search protocol using 3D shape-only
rotational FFT scans with L = 20 followed by 1D shape plus
electrostatic rescoring with L = 30 gives a good trade-off between
speed and accuracy. When biochemical or biophysical knowledge
about a complex is available, this information may easily be
exploited to constrain the angular search to the interface region(s),
and docking times are reduced to just a few minutes. For a clear
majority of the Docking Benchmark examples, constraining the
docking search in this way dramatically improves the quality of

the predictions, producing acceptable predictions in the top 20 in 28
cases using one constraint, and giving up to 45 in the top 20 and 37
in the top 10 using two constraints. Hence the approach provides
a practical and fast tool for rigid body protein–protein docking,
especially when some prior knowledge about one or both binding
sites is available.
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